Something from Nothing: the γ -ray Spectroscopy of ²³¹U

D.G. Roux¹, R.A. Bark², E.A. Lawrie^{2,3}, J.J. Lawrie², S.S. Ntshangase⁴, T.S. Dinoko², J.L. Easton², P. Jones², B.V. Kheswa³, N.A. Khumalo³, S.N.T. Majola^{2,5}, L.P. Masiteng^{2,5}, D. Negi^{2,6}, S.P. Noncolela^{2,3,7}, J.F. Sharpey-Schafer, O. Shirinda², P.C. Uwitonze^{1,8}

¹Department of Physics and Electronics, Rhodes University, 6140 Grahamstown, South Africa

²iThemba LABS, National Research Foundation, P.O. Box 722, Somerset West 7129, South Africa

³University of the Western Cape, Department of Physics, Private Bag X17, Bellville 7535, South Africa

⁴University of Zululand, Department of Physics, Private Bag X1001, KwaDlangezwa 3886, South Africa

⁵Department of Physics, University of Johannesburg,

P.O. Box 524, Auckland Park 2006, South Africa

⁶Department of Physics, Manipal Institute of Technology,

Manipal Academy of Higher Education, Manipal, Karnataka-576104, India

⁷University of Stellenbosch, Department of Physics, Stellenbosch, South Africa

⁸University of Rwanda, Department of Mathematics, Sciences and Physical Education, 50 Rwamagana, Rwanda

The γ -ray spectroscopy of uranium nuclei far from stability is compromised by large fission cross sections and competition from electron conversion. However, by using a recoil detector to discriminate against the fission background, together with the AFRODITE γ -ray spectometer array, we have observed the first rotational bands in 231 U, to date the lightest odd uranium nucleus shown to exhibit collective structure. Excited states were populated in the 232 Th(α ,5n) reaction at a beam energy of 52 MeV. The data analysis revealed three rotational bands, interpreted as the ground-state band ν [633]5/2+, yrast band ν [752]5/2-, and an excited band ν [631]3/2+. These configuration assignments are supported by Cranked Shell Model calculations and the electromagnetic properties of the bands. The excitation energy of the ν [752]5/2- band head is suggested to be 113.0 keV.