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Abstract. Theoretical description of collective excitations in nuclei and as-
trophysically relevant processes involving nuclear excited states requires ap-
proaches going beyond Random Phase Approximation (RPA), based on 1 parti-
cle and 1 hole (1p1h) configurations in order to assess the fine structure of the
excitation spectra. To realistically compare theoretical predictions with experi-
mental data, it is essential to microscopically describe the fragmentation of ex-
cited state spectrum by introducing couplings with complex configurations. We
have developed self-consistent Second Tamm-Dancoff Approximation (STDA)
based on the relativistic energy density functional theory. This approach allows
for a more accurate and comprehensive analysis of nuclear excitations by in-
corporating the complex interplay of 1p1h and 2p2h configurations. This work
is focused on analyzing isoscalar monopole and quadrupole transitions in 40Ca
and 48Ca within the framework of STDA. We have used DD-PC1 parametriza-
tion of the relativistic point coupling interaction and investigated the influence of
rearrangement terms on the excitation spectra, the position of centroid energies,
and the strength distribution.

1 Introduction

Nuclear structure research is fundamental for understanding various phenomena
in both nuclear physics and astrophysics. One of the significant challenges in this
field is the accurate description of collective multipole excitations, such as giant
resonances. These excitations play a crucial role in interpreting experimental
data and advancing theoretical models.

In this work, we present the first self-consistent implementation of the Sec-
ond Tamm-Dancoff Approximation (STDA) based on the relativistic energy den-
sity functional theory. We have analyzed both isoscalar giant monopole (IS-
GMR) and quadrupole excitations (ISGQR) in 40Ca and 48Ca. Despite being
computationally more intensive, STDA delivers greater accuracy and the insight
into fragmentation in modeling complex excitation spectra. Both STDA and
second random phase approximation (SRPA) were introduced in [1] and applied
in a few nuclear models which included finite range interactions [2, 3], Skyrme
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functionals [4, 5] and Gogny interaction [6]. While previous STDA and SRPA
studies have been primarily focused on nonrelativistic models, often with lim-
ited configurations, our approach incorporates the full complexity of these nu-
clear transitions in the relativistic energy density functional (REDF) theory with
an exception of neglecting coupling between 2 particle-2 hole (2p2h) configu-
rations in the present implementation, thus providing a comprehensive under-
standing of the excitation spectra in the relativistic framework.

.

2 Relativistic Lagrangian

Two types of effective nuclear interactions are most commonly present in mod-
ern REDF theory: (i) the Walecka-type (nucleons represent a system of Dirac
particles interacting through meson and photon exchange); (ii) the contact type
(point-coupling, where the meson propagator is replaced by a zero-range inter-
action) [7]. In both models, the relativistic Lagrangian is constructed using the
fundamental symmetries of QCD (Lorentz covariance, gauge invariance, and
chiral symmetry). The relativistic point-coupling Lagrangian is built from ba-
sic densities and currents that are bilinear in the Dirac spinor fields for nucle-
ons [7–9]:

ψ̄OτΓψ, Oτ ∈ {1, τi} , Γ ∈ {1, γµ, γ5, γsγµ, σµv} . (1)

where τi are the Pauli matrices in isospin space, and Γ represents the Dirac matri-
ces or their products. The determination of the ground state density and energy
arises from the self-consistent solution of the relativistic linear single-nucleon
Kohn-Sham equations. The general expression for the effective Lagrangian can
be written using an expansion of currents ψ̄ O τ Γψ and their derivatives. Fol-
lowing the analogy of the Walecka type models, i.e., the expansion of prop-
agators, one can easily construct four-fermion (contact) interaction in terms
of different isospin-spatial space ph channels: i) isoscalar-scalar (ψ̄ψ)(ψ̄ψ),
ii) isoscalar-vector (ψ̄γµψ)(ψ̄γµψ), iii) isovector-scalar (ψ̄~τψ)(ψ̄~τψ) and iv)
isovector-vector (ψ̄~τγµψ)(ψ̄~τγµψ). In a similar manner, the derivative terms
can also be constructed. Upon including the free-nucleon and electromagnetic
components, the resulting Lagrangian density for the nuclear system is given by
the expression [7]:

L = ψ̄ (iγµ∂
µ −m)ψ − 1

2
αS(ρ)

(
ψ̄ψ
) (
ψ̄ψ
)

− 1

2
αV (ρ)

(
ψ̄γµψ

) (
ψ̄γµψ

)
− 1

2
αTV (ρ)

(
ψ̄~τγµψ

) (
ψ̄~τγµψ

)
− 1

2
δS∂ν

(
ψ̄ψ
)
∂ν
(
ψ̄ψ
)
− eψ̄γµAµ

1− τ3
2

ψ. (2)

Density dependence in the case of the isoscalar-scalar αS(ρ), isoscalar-vector
αV (ρ) and isovector-vector coupling αTV (ρ) for the DD-PC1 parametrization
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of the point coupling Lagrangian density from eq. (2) is given by

αi [x] = ai + (bi + cix) exp(−dix), (3)

where x = ρ/ρsat, ρ stands for barion (vector) density and ρsat for the nucleon
density at saturation in the symmetric nuclear matter. The values of parameters
ai, bi, ci and di for the DD-PC1 parametrization used in this work are given in
Ref. [7].

3 Second TDA

In the relativistic form of TDA the excitation operators are assumed to be linear
superposition of 1p1h and antiparticle-hole (1a1h) operators:

Q†
ν =

∑
ph

Xν
pha

†
pah +

∑
αh

Xν
αha

†
αah. (4)

For the simplicity, the coupling to total angular momentum is not included here.
In the case of the relativistic STDA, we need to include 2p2h, 1 particle1 an-
tiparticle2 hole (1p1a2h) and 2 antiparticle2 hole (2a2h) pairs, in addition to
the standard ones from eq. (4):

Q†
ν =

∑
ph

Xν
pha

†
pah +

∑
αh

Xν
αha

†
αah +

∑
p<p′h<h′

X νpp′hh′a†pa
†
p′ah′ah

+
∑

pαh<h′

X νpαhh′a†pa
†
αah′ah +

∑
α<α′h<h′

X ναα′hh′a†αa
†
α′ah′ah. (5)

The energiesEν of the excited states and theirX and X amplitudes are obtained
by solving STDA eigenvalue problem:

(
A11 A12

A21 A22

)(
Xν

X ν
)

= Eν

(
Xν

X ν
)
. (6)

with amplitudes Xν = (Xν
ph X

ν
αh)T and X ν = (X νpp′hh′ X νpαhh′ Xαα′hh′)T . In

the present work we neglect 1p1α2h and 2α2h contributions in Q†
ν (and X ν),

therefore we solve the STDA equations in ph ⊕ ah ⊕ 2p2h-space. Further-
more, if we disregard the coupling among 2p2h states, the matrix A22 becomes
diagonal, with its elements corresponding to the unperturbed 2p2h energies:

A22 = δp1p′1δh1h′
1
δp2p′2δh2h′

2
(ep1 + ep2 − eh1

− eh2
) . (7)
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Standard TDA, i.e., A11 matrix elements in the STDA, within density functional
(DFT) framework are given by (see Ref. [10] or [11]):

[A11]Ph;P ′h′ =
1

2

∑
ij

[
∂2v̂ijij [ρ]

∂ρhP∂ρP ′h′

]∣∣∣∣
ρ = ρ(0)

+
∑
j

[
∂v̂Pjhj [ρ]

∂ρP ′h′

]∣∣∣∣
ρ=ρ(0)

+
∑
j

[
∂v̂h′jP ′j [ρ]

∂ρhP

]∣∣∣∣
ρ=ρ(0)

+ λPP ′

[
ρ(0)

]
δhh′

− λh′h

[
ρ(0)

]
δPP ′ + v̂Ph′hP ′

[
ρ(0)

]
. (8)

The first three terms in eq. (8) are the so called rearrangement terms, which exist
in ph channels with density dependent couplings (see eq. (2)). In the relativistic
case, indices P and P ′ in eq. (8) are used for both particle and antiparticle states,
while p, pi and p′i stand for particle, and h, hi and h′i for hole states (i = 1 or 2).
The present notation for the two-body interaction v̂abcd obeys standard Feynman
rules. The coupling between 1p1h and 2p2h configurations is incorporated into
the matrix A12 element, which is given by the following expression [1]:

A12
[ph];[p1p2h1h2]

= A(p1, p2)A(h1, h2)δpp1δhh1
λh2p2

[
ρ(0)

]
+A(h1, h2)δhh1

v̂ph2p1p2

[
ρ(0)

]
−A(p1, p2)δpp1 v̂h1h2hp2

[
ρ(0)

]
, (9)

with antisymmetrization A(a, b) = 1 − P (a, b), where P (a, b) is permutation
operator which acts on all quantum numbers in a and b. For the A12 rearrange-
ment term we have the following term (for the derivation see Ref. [10]):

[
Arear. term

12

]
ph;p1p2h1h2

=
∂v̂h1h2p1p2 [ρ]

∂ρhp

∣∣∣∣
ρ=ρ(0)

, (10)

in the isoscalar-scalar, isoscalar-vector and isovector-vector ph channel.

4 Results

In Figures 1 and 2, we show discrete ISGMR strength distribution for the ph
free response, TDA and STDA response in 40Ca and 48Ca. To obtain the nu-
clear ground state in the Dirac-Hartree model with the relativistic point coupling
interaction DD-PC1 [7], the single-particle energies and wave functions of the
occupied and unoccupied levels are solved by using the spherical harmonic oscil-
lator basis expanded up to the maximum major quantum number of Nmax = 20
for protons and neutrons both for 40Ca and 48Ca. Both TDA and STDA calcu-
lations used ph cutoff Eph = 100 MeV and ah cutoff of Eah = 1800 MeV. We
observed the fragmentation of the spectrum for both nuclei even with relatively
small 2p2h Ecutoff ≈ 40 MeV. In the STDA framework, as the energy cutoff pa-
rameterEcutoff for 2p2h configurations is increased, a rapidly growing number of
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Figure 1.Isocalar giant monopole resonance strength distribution (ISMGR) in 40Ca for
ph free response, TDA and STDA responses as functions of excitation energy for different
2p2h energy cutoffs.

small 2p2hEcutoff ≈ 40 MeV. In the STDA framework, as the energy cutoff pa-
rameterEcutoff for 2p2h configurations is increased, a rapidly growing number of
states emerge between the primary1p1h peaks. For instance, in the case of40Ca,
the number of such states increases from a few hundred atEcutoff = 30 MeV to
nearly 20,000 whenEcutoff reaches 80 MeV. While the majority of these addi-
tional states are predominantly of2p2h character, few of them exhibit a strong
mixing of 1p1h and2p2h configurations.

In Figs. 3. and 4., the calculated distributions forph free response, TDA and
STDA have been convoluted with a Lorentzian function with a 1MeV width,
which introduces an artificial width to all peaks. The STDA centroid energies
are slightly different than those obtained from TDA. In particular, for the IS-
GMR in 40Ca we obtainedESTDA

centroid = 21.194 MeV (ETDA
centroid = 21.192 MeV)

and full widthΓSTDA = 6.377 MeV for 2p2hEcutoff = 60 MeV, while experi-
mental values are somewhat lower withEexp.

centroid= (19.18±0.37)MeV and rms
width of Γexp. = 4.88 MeV [12]. On the other hand, for the ISGMR in48Ca
we obtainedESTDA

centroid = 20.122 MeV (ETDA
centroid = 20.125 MeV) and full width

ΓSTDA = 6.818 MeV for 2p2hEcutoff = 60 MeV. The experimental value of cen-
troid energy is somewhat lower for ISGMR in48Ca withEexp.

centroid= (19.5±0.1)
MeV (for TAMU groupEexp.

centroid = (19.9± 0.2) MeV) [13]. Although the cen-
troid energies differ only slightly between TDA and STDA, a shift of the domi-
nant peaks in STDA towards lower energies is observed for both nuclei, reaching
up to |∆Ex| ≈ 2 MeV for Ecutoff = 60 MeV relative to TDA. The primary rea-
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Figure 1. Isocalar giant monopole resonance strength distribution (ISMGR) in 40Ca for
ph free response, TDA and STDA responses as functions of excitation energy for differ-
ent 2p2h energy cutoffs.
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Figure 2.The same as Figure 1, but for 48Ca.

son for the discrepancy between the TDA and STDA results for the ISGMR
lies in the fact that the collective excitations examined here are influenced by
the implicit inclusion of the coupling between single-particle states and virtual
phonons within STDA, although only partially, due to the exclusion of direct
coupling between2p2h states. The inclusion of higher-order configurations in
STDA modifies the single-particle states with self-energy corrections, narrowing
their energy spacing and thus decreasing theph excitation energies [3]. The rear-
rangement terms inA12 matrix are included in all STDA calculations, however,
they do not significantly affect the excitation spectrum.

Figures 5. and 6. show the discrete ISGQR strength distributions corre-
sponding to the free response, TDA and STDA responses for40Ca and48Ca,
respectively. For the ISGQR in40Ca we obtainedESTDA

centroid = 18.138 MeV
(ETDA

centroid= 19.369 MeV) and full widthΓSTDA = 6.664 MeV (ΓTDA = 2.109
MeV) for Ecutoff = 60 MeV, while experimental values areEexp.

centroid= (17.84±
0.43) MeV and rms widthΓexp. = (2.89 ± 0.60) MeV [12]. In the case of
the STDA calculation of ISGQR in48Ca the centroid energyESTDA

centroid = 16.418
MeV and the full widthΓexp. = 7.558 MeV. The difference between the TDA
and STDA centroid energies for the ISGQR in48Ca is only|∆E| ≈ 0.001
MeV. Figures 7. and 8. show smoothened strength distribution for ISGQR in
40Ca and48Ca. In the case of the STDA with 2p2hEcutoff & 60 MeV eigen-
states in the low-lying part of the ISGQR spectrum for40Ca (E . 10 MeV)
start to appear (see Fig. 5.). In contrast, these states are completely absent in the
TDA calculations, which do not predict any strength in this region. For example,
whenEcutoff is set to 60 MeV, three states are generated at excitation energies of
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states emerge between the primary 1p1h peaks. For instance, in the case of 40Ca,
the number of such states increases from a few hundred at Ecutoff = 30 MeV to
nearly 20,000 when Ecutoff reaches 80 MeV. While the majority of these addi-
tional states are predominantly of 2p2h character, few of them exhibit a strong
mixing of 1p1h and 2p2h configurations.

In Figures 3 and 4, the calculated distributions for ph free response, TDA and
STDA have been convoluted with a Lorentzian function with a 1 MeV width,
which introduces an artificial width to all peaks. The STDA centroid energies
are slightly different than those obtained from TDA. In particular, for the IS-
GMR in 40Ca we obtained ESTDA

centroid = 21.194 MeV (ETDA
centroid = 21.192 MeV)

and full width ΓSTDA = 6.377 MeV for 2p2h Ecutoff = 60 MeV, while experi-
mental values are somewhat lower with Eexp.

centroid = (19.18±0.37) MeV and rms
width of Γexp. = 4.88 MeV [12]. On the other hand, for the ISGMR in 48Ca
we obtained ESTDA

centroid = 20.122 MeV (ETDA
centroid = 20.125 MeV) and full width

ΓSTDA = 6.818 MeV for 2p2hEcutoff = 60 MeV. The experimental value of cen-
troid energy is somewhat lower for ISGMR in 48Ca with Eexp.

centroid = (19.5±0.1)
MeV (for TAMU group Eexp.

centroid = (19.9 ± 0.2) MeV) [13]. Although the cen-
troid energies differ only slightly between TDA and STDA, a shift of the domi-
nant peaks in STDA towards lower energies is observed for both nuclei, reaching
up to |∆Ex| ≈ 2 MeV for Ecutoff = 60 MeV relative to TDA. The primary rea-
son for the discrepancy between the TDA and STDA results for the ISGMR
lies in the fact that the collective excitations examined here are influenced by
the implicit inclusion of the coupling between single-particle states and virtual
phonons within STDA, although only partially, due to the exclusion of direct

Rearrangement terms in relativistic point coupling modelsin STDA

0 10 20 30 40 50
E [MeV]

0

100

200

300

400

500

600

R
(E

) 
[e

2 fm
4 ]

free response
TDA
STDA E

cutoff
 = 50 MeV

STDA E
cutoff

 = 60 MeV

STDA E
cutoff

 = 70 MeV

STDA E
cutoff

 = 80 MeV

ISGMR
40

Ca

Figure 3.ISGMR strength distribution in 40Ca for ph free response, TDA and STDA re-
sponses as functions of excitation energies for different 2p2h energy cutoffs. Lorentzian
smoothing of 1 MeV width is used. The experimental value of centroid energy is repre-
sented by an arrow.

0 10 20 30 40 50
E [MeV]

0

200

400

600

800

R
(E

) 
[e

2 fm
4 ]

free response
TDA
STDA E

cutoff
 = 40 MeV

STDA E
cutoff

 = 50 MeV

STDA E
cutoff

 = 60 MeV

STDA E
cutoff

 = 70 MeV

ISGMR

48
Ca

Figure 4.The same as Figure 3, but for 48Ca

5.245, 8.775, and 10.083 MeV, with corresponding transition strengths of 7.620,
58.067, and 1.396 e2 fm4, respectively. On the other hand, the obtained low-
lying TDA spectrum in48Ca contains one dominant peak atE = 3.751 MeV
with corresponding strength ofR = 91.132 e2 fm4, and the smaller one with
E = 7.450 MeV andR = 7.483 e2 fm4. ForEcutoff = 55 MeV in STDA cal-
culation of ISGQR in48Ca, a significant portion of the transition strength below

7

Figure 3. ISGMR strength distribution in 40Ca for ph free response, TDA and STDA re-
sponses as functions of excitation energies for different 2p2h energy cutoffs. Lorentzian
smoothing of 1 MeV width is used. The experimental value of centroid energy is repre-
sented by an arrow.
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5.245, 8.775, and 10.083 MeV, with corresponding transition strengths of 7.620,
58.067, and 1.396 e2 fm4, respectively. On the other hand, the obtained low-
lying TDA spectrum in48Ca contains one dominant peak atE = 3.751 MeV
with corresponding strength ofR = 91.132 e2 fm4, and the smaller one with
E = 7.450 MeV andR = 7.483 e2 fm4. ForEcutoff = 55 MeV in STDA cal-
culation of ISGQR in48Ca, a significant portion of the transition strength below
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Figure 4. The same as Figure 3, but for 48Ca.

coupling between 2p2h states. The inclusion of higher-order configurations in
STDA modifies the single-particle states with self-energy corrections, narrowing
their energy spacing and thus decreasing the ph excitation energies [3]. The rear-
rangement terms in A12 matrix are included in all STDA calculations, however,
they do not significantly affect the excitation spectrum.

Figures 5 and 6 show the discrete ISGQR strength distributions correspond-
ing to the free response, TDA and STDA responses for 40Ca and 48Ca, respec-
tively. For the ISGQR in 40Ca we obtained ESTDA

centroid = 18.138 MeV (ETDA
centroid =

19.369 MeV) and full width ΓSTDA = 6.664 MeV (ΓTDA = 2.109 MeV) for
Ecutoff = 60 MeV, while experimental values areEexp.

centroid = (17.84±0.43) MeV
and rms width Γexp. = (2.89±0.60) MeV [12]. In the case of the STDA calcula-
tion of ISGQR in 48Ca the centroid energy ESTDA

centroid = 16.418 MeV and the full
width Γexp. = 7.558 MeV. The difference between the TDA and STDA centroid
energies for the ISGQR in 48Ca is only |∆E| ≈ 0.001 MeV. Figures 7 and 8
show smoothened strength distribution for ISGQR in 40Ca and 48Ca. In the case
of the STDA with 2p2hEcutoff & 60 MeV eigenstates in the low-lying part of the
ISGQR spectrum for 40Ca (E . 10 MeV) start to appear (see Figure 5). In con-
trast, these states are completely absent in the TDA calculations, which do not
predict any strength in this region. For example, when Ecutoff is set to 60 MeV,
three states are generated at excitation energies of 5.245, 8.775, and 10.083 MeV,
with corresponding transition strengths of 7.620, 58.067, and 1.396 e2 fm4, re-
spectively. On the other hand, the obtained low-lying TDA spectrum in 48Ca
contains one dominant peak at E = 3.751 MeV with corresponding strength of
R = 91.132 e2 fm4, and the smaller one with E = 7.450 MeV and R = 7.483
e2 fm4. For Ecutoff = 55 MeV in STDA calculation of ISGQR in 48Ca, a signif-
icant portion of the transition strength below 10 MeV is concentrated mainly in
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Figure 5. Discrete ISGQR strength distribution in 40Ca for ph free response, TDA
and STDA responses as functions of excitation energy for different 2p2h energy cutoffs.
STDA(p) stands for spectrum calculated with partial eigenvalues methods.

10 MeV is concentrated mainly in three peaks, appearing at 1.675 MeV, 5.073
MeV, and 8.017 MeV. However, the total strength in this energy region amounts
only 104.15 e2fm4. Experimentally, the ISGQR strength in this low-energy re-
gion is approximately 332 e2 fm4 for 40Ca and 407 e2 fm4 for 48Ca [14]. This
discrepancy indicates that the STDA model in its diagonal approximation un-
derestimates the experimental strength in the low-lying part of energy spectrum
by about80% in 40Ca and74% in 48Ca, suggesting that certain collective or
configuration-mixing effects are missing in this theoretical framework.

5 Summary and future perspective

In this work, we have presented the first relativistic STDA calculations based
on the relativistic nuclear energy density functional withpoint coupling inter-
actions. By including higher-order 2 particle-2 holes (2p2h) configurations, the
STDA in its diagonal approximation provides a fragmentation in the representa-
tion of the ISGMR and ISGQR transition strengths, and energyshifts of the main
peaks to lower energies. The STDA is capable to describe fine details in the IS-
GQR excitation spectra of40Ca and48Ca, including low-frequency modes that
TDA may overlook. For more complete description, future studies will extend
this model to second RPA, incorporating the coupling between 2p2h configu-
rations, and thorough investigation of the contributions of antiparticles inpa2h
and2a2h configurations, as well as implementation of the subtraction method.
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Figure 5. Discrete ISGQR strength distribution in 40Ca for ph free response, TDA and
STDA responses as functions of excitation energy for different 2p2h energy cutoffs.
STDA(p) stands for spectrum calculated with partial eigenvalues methods.Rearrangement terms in relativistic point coupling modelsin STDA
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three peaks, appearing at 1.675 MeV, 5.073 MeV, and 8.017 MeV. However, the
total strength in this energy region amounts only 104.15 e2fm4. Experimentally,
the ISGQR strength in this low-energy region is approximately 332 e2 fm4 for
40Ca and 407 e2 fm4 for 48Ca [14]. This discrepancy indicates that the STDA
model in its diagonal approximation underestimates the experimental strength in
the low-lying part of energy spectrum by about 80% in 40Ca and 74% in 48Ca,
suggesting that certain collective or configuration-mixing effects are missing in
this theoretical framework.
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5 Summary and Future Perspective

In this work, we have presented the first relativistic STDA calculations based
on the relativistic nuclear energy density functional with point coupling inter-
actions. By including higher-order 2 particle-2 holes (2p2h) configurations, the
STDA in its diagonal approximation provides a fragmentation in the representa-
tion of the ISGMR and ISGQR transition strengths, and energy shifts of the main
peaks to lower energies. The STDA is capable to describe fine details in the IS-
GQR excitation spectra of 40Ca and 48Ca, including low-frequency modes that
TDA may overlook. For more complete description, future studies will extend
this model to second RPA, incorporating the coupling between 2p2h configu-
rations, and thorough investigation of the contributions of antiparticles in pa2h
and 2a2h configurations, as well as implementation of the subtraction method.
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