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Abstract. The experimental data from quasielastic electron and (anti)neutrino
scattering on 12C are reanalyzed within a theoretical method in terms of a new
scaling variable ψ∗ suggested by the interacting relativistic Fermi gas model
with scalar and vector interactions, which is known to generate a relativistic
effective mass for the interacting nucleons. We construct a new scaling func-
tion fQE(ψ∗) for the inclusive lepton scattering from nuclei within the coherent
density fluctuation model (CDFM). The latter is a natural extension of the rel-
ativistic Fermi gas (RFG) model to finite nuclei. In this work, on the basis of
the scaling function obtained within CDFM with a relativistic effective mass
m∗N = 0.8mN , we calculate and compare the theoretical predictions with a
large set of experimental data for inclusive (e, e′) and (anti)neutrino cross sec-
tions. The model also includes the contribution of weak two-body currents in
the two-particle two-hole sector, evaluated within a fully RFG. Good agree-
ment with experimental data is found over the whole range of electron and
(anti)neutrino energies.

1 Introduction

The superscaling phenomenon was firstly considered within the framework of
the Relativistic Fermi Gas (RFG) model [1–6], where a properly defined func-
tion of the scaling ψ-variable was introduced. At large transferred momentum
q = |q| (q > 500 MeV/c) the latter does not depend on q and the mass num-
ber. As pointed out in [4], however, the actual nuclear dynamical content of the
superscaling is more complex than that provided by the RFG model. It was ob-
served that the experimental data have a superscaling behavior in the low-ω side
(ω being the transfer energy) of the quasielastic peak for large negative values
of ψ (up to ψ ≈ −2), while the predictions of the RFG model are f(ψ) = 0
for ψ ≤ −1. This imposes the consideration of the superscaling in realistic
finite systems. One of the approaches to do this was developed [7, 8] in the
CDFM [9–16] which is related to the δ-function limit of the generator coordi-
nate method [7, 17]. It was shown in [7, 8, 18] that the superscaling in nuclei
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can be explained quantitatively on the basis of the similar behavior of the high-
momentum components of the nucleon momentum distribution in light, medium
and heavy nuclei. It is well known that the latter is related to the effects of the
NN correlations in nuclei (see, e.g. [9, 10]).

In our previous works [7, 8, 18, 19] we obtained the CDFM scaling function
f(ψ) starting from the RFG model scaling function fRFG(ψ) and convoluting it
with the weight function |F (x)|2 that is related equivalently to either the density
ρ(r) or the nucleon momentum distribution n(k) in nuclei. Thus, the CDFM
scaling function is an infinite superposition of weighted RFG scaling functions.
This approach improves upon RFG and enables one to describe the scaling func-
tion for realistic finite nuclear systems. The CDFM scaling function has been
used to predict cross sections for several processes such as the inclusive elec-
tron scattering in the QE and ∆- regions [19, 20] and neutrino (antineutrino)
scattering both for charge-changing (CC) [20] and for neutral-current (NC) [21]
processes. In our work [19] we reproduce experimental data of the inclusive
electron scattering in the QE-region using CDFM scaling function which is ob-
tained by the parameterizing the RFG scaling function and by the coefficient c1,
which helps us to account for the experimental fact of the asymmetry of the scal-
ing function. The value of the coefficient c1 (c1 6= 3/4) is taken in accordance
with the empirical data (c1 depends on the value of the momentum transfer in
the QE peak).

In the present work we follow Ref. [22], where the ψ∗ scaling idea is ex-
plored in the context of the Relativistic Mean Field (RMF) for nuclear matter.
The new scaling function f∗(ψ∗) including dynamical relativistic effects [22–
25] is introduced through an effective mass into its definition. The resulting su-
perscaling approach with relativistic effective mass (SuSAM*) model describes
a large amount of the electron scattering data lying inside a phenomenological
quasielastic band, and it has been extended recently successfully to the neutrino
and antineutrino sector [26] giving a fair agreement with the data. An enhance-
ment of the SuSAM* model is detailed in Refs. [27–30], where the responses of
2p2h meson exchange currents (MEC) are calculated consistently with the mean
field model in nuclear matter. This is achieved by incorporating an effective mass
and vector energy for the nucleon, thereby explicitly including the same medium
modifications as the quasielastic responses. A systematic review of experimen-
tal data on quasielastic neutrino scattering reveals a reasonable agreement with
the theoretical predictions derived from the extended SuSAM* model [30].

The SuSAM* model was first developed using the set of 12C data [22, 23]
and later applied to other nuclei in [24]. In Ref. [22] was obtained the best
value of the effective mass M∗ = m∗N/mN = 0.8, which we use in our present
consideration. This value provides the best scaling behavior of the data with a
large fraction of data concentrated around the universal scaling function of the
relativistic Fermi gas

fRFG(ψ∗) =
3

4
(1− ψ∗2)θ(1− ψ∗2). (1)
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Theψ∗ variable was inspired by the mean-field theory, that provides a reasonable
description of the quasielastic response function [31, 32]. The important point
is that in the interacting RFG model the vector and scalar potentials generate an
effective mass m∗N for the nucleon in the medium.

Our present approach, called CDFMM∗ (CDFM with M∗), uses scaling
function obtained within the CDFM model. It keeps the gauge invariance and
describes the dynamical enhancement of both the lower components of the rela-
tivistic spinors and the transverse response function. In Ref. [33], we thoroughly
examined the theoretical framework for deriving the CDFMM∗ scaling function
and the general formalism for characterizing the (e, e′) and (anti)neutrino CC
quasielastic double differential cross sections. In this study, we present our main
results for the inclusive (e, e′) and (anti)neutrino CC quasielastic cross sections
using the CDFMM∗ approach.

2 Results and Discussions

In this section we use the new scaling function of the CDFMM∗ model (see
Ref. [33]) to compute lepton scattering cross sections on 12C. It is important to
test CDFMM∗ model for inclusive (e, e′) scattering before to apply it to neutrino
scattering. In Figure 1 we show the predictions of CDFMM∗+MEC contribu-
tion (blue solid line) for the (e, e′) cross section compared to the experimental
data [37]. Also, the RFGM∗+MEC results (green dashed line) are given. The
contribution of meson exchange currents (MEC) is presented, separately. The
evaluation of the 2p-2h pionic MEC contributions is performed within the RFG
model in which a fully Lorentz covariant calculation of the MEC can be per-
formed (see [38–40]). The CDFMM∗ model description is quite acceptable us-
ing just one free parameter, namely the effective mass M∗, which is fixed to 0.8
in all performed calculations.

In Figures 2 and 3 we show the double differential cross section averaged
over the neutrino and antineutrino energy flux against the kinetic energy of the
final muon. The data are taken from the MiniBooNE Collaboration [34, 35].
We represent a large variety of kinematical situations where each panel refers to
results averaged over a particular muon angular bin.

In this work we make use of the 2p-2h MEC model developed in Ref. [41],
which is an extension to the weak sector of the seminal papers [38, 42, 43] for
the electromagnetic case. The calculation is entirely based on the RFG model
and it incorporates the explicit evaluation of the five response functions involved
in inclusive neutrino scattering. We use a general parametrization of the MEC
responses that significantly reduces the computational time. Its functional form
for the cases of 12C and 16O is given in Refs. [44–46].

The results including both QE process (obtained within the CDFMM∗ model)
and 2p–2h MEC are compared with the data in Figures 2 and 3. The QE and 2p–
2h MEC contributions are presented separately also in the figures. It should be
noted the important role played by 2p-2h MEC to describe correctly the experi-
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Figure 1. (Color online) The CDFMM∗ results for the inclusive (e, e′) cross section for
several kinematics compared to the RFGM∗ model and experimental data [37].

mental data of the order of ∼20–25% of the total response at the maximum. In
the neutrino case (Figure 2) this relative strength is almost independent of the
scattering angle. In the antineutrino case (Figure 3) the 2p-2h relative strength
gets larger for backward scattering angles. This is due to the fact that the an-
tineutrino cross section involves a destructive interference between the T and T ′

channels and is therefore more sensitive to nuclear effects.
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Figure 2. (Color online) MiniBooNE flux-folded double differential cross section per
target neutron for the νµ CCQE process on 12C displayed versus the µ− kinetic energy
Tµ for various bins of cos θµ obtained within the CDFMM∗ model including MEC. 2p–
2h MEC and QE (obtained within the CDFMM∗ model) results are shown separately.
The data are from [34].

Theoretical predictions within the CDFMM∗ model including both QE and
2p-2h MEC contributions are in good agreement with the data in most of the
kinematical situations explored. Only at scattering angles approaching 90◦ and
above one can see a hint of a difference, although in these situations only a small
number of data points with large uncertainties exist.

The CDFMM∗ results for the total flux-unfolded integrated cross sections
per nucleon are given in Figure 4 being compared with the MiniBooNE [34, 35]
and NOMAD [36] data (up to 100 GeV). As can be seen in Figure 4, the 2p-
2h MEC contributions are needed in order to reproduce the MiniBooNE data.
Also, the contributions of different parts of the scaling to the total cross sections
are presented in Figure 4. The main contribution to the cross sections comes
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Figure 3. (Color online) As for Figure 2, but now for the νµ CCQE process on 12C. The
data are from [35].

from the part of the CDFMM∗ scaling function between −1 ≤ ψ∗ ≤ 1. The
CDFMM∗ model with 2p–2h MEC clearly overpredicts the NOMAD data. On
the contrary, the results without MEC contributions (the pure QE results ob-
tained within CDFMM∗ model) are in good agreement with the NOMAD data.
This result is consistent with the setup of the NOMAD experiment that, unlike
MiniBooNE, can select true QE, rather than the “QE-like” events. The role of
the 2p-2h MEC is very important at all neutrino energies, getting an almost con-
stant value of the order of∼30%−35% compared with the pure QE contribution.
Here, we would like to mention that the quasielastic data themselves have been
measured not directly but have been deduced from the so-called quasielastic-like
data by subtracting a background of events in which pions are firstly produced,
but then reabsorbed again. This background was determined from the calcula-
tions with an event generator. Thus, the final QE + 2p-2h data invariably contain
some model dependence [47].
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Figure 4. (Color online) CCQE νµ–12C (νµ–12C) total cross section per neutron (pro-
ton) as a function of the neutrino energy. The left panel (a) corresponds to neutrino
cross sections and the right one (b) to antineutrino reactions. The data are from Mini-
BooNE [34, 35] and NOMAD [36] experiments.

3 Conclusions

It is shown in our work that the CDFMM∗ model describes successfully inclusive
(e, e′) and ν(ν) CCQE quasielastic cross section on the basis of the new scaling
variable ψ∗, of the empirical density distribution of protons to determine the
weight function |F (x)|2, and of the corresponding scaling function fQE(ψ∗).
We note that in the CDFMM∗ model an effective mass M∗ = m∗N/mN =
0.8 is used. The latter is originating from the interacting RFG model in which
the vector and scalar potentials generate the effective mass of the nucleon in
medium. We should emphasize that the CDFMM∗ scaling function keeps the
gauge invariance (that is not the case in the SuSA approach) and describes the
dynamical enhancement of the lower components of the relativistic spinors, as
well as the transverse response function. In addition, we note the important fact
that in the CDFMM∗ model the weight and scaling functions are normalized to
unity. It is pointed out that the constructed realistic CDFMM∗ scaling function
is an essential ingredient in this approach for the description of the processes of
lepton scattering from nuclei.

It is important to recognize that the parametrization of the 2p2h MEC used in
this analysis originates from the RFG model with an effective mass of M∗ = 1.
An alternative parametrization for electroweak 2p2h MEC responses, computed
in the RMF with an effective mass of M∗ = 0.8, has been proposed in recent
studies [27, 28]. This new parametrization, utilizing a semiempirical formula,
may offer advantages over the CDFMM∗ model. Thus, the first step to improve
our model is to implement this alternative parametrization to assess its impact
on future research. Additionally, a prospective project could involve expanding
the scaling method by applying a realistic CDFMM∗ scaling function to predict
outcomes for charge-changing neutrino and antineutrino scattering from nuclei
in the ∆-region.
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