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Abstract. Nuclear scattering experiments have been used to provide detailed
information about the structure of nuclei for decades. They help in understand-
ing the behavior of neutrons and protons within the nucleus, and provide insights
into the energy levels, spin states, and magnetic moments of nucleons, which
are important for nuclear physics and applications in reactor design and nuclear
medicine. Understanding nucleon-nucleus interactions is vital for interpreting
processes in stellar environments and supernovae.

We calculated and present nucleon-nucleus effective interactions and elastic
scattering observables in the leading-order spectator expansion for closed and
open shell nuclei, like 4He, 12C, and 16O, at projectile energies between 65
and 160 (180) MeV, using three different nucleon-nucleon (NN) interactions
(up to next-to-next-to-leading order), based on chiral effective field theory. The
one-body density matrix used in the effective interaction, has been constructed
within the framework of the no-core shell model

1 Introduction

Continuous developments of nucleon-nucleon (NN) and three nucleon (3N) in-
teractions derived from chiral effective theory [1–4] together with utilization of
parallel computing resources have placed ab initio calculations at the frontier of
structure and reactions explorations.The ab initio no-core shell model (NCSM)
approach (see, e.g. [5–9]) has considerably advanced our understanding and de-
scription of low-lying states in light nuclei. One way to extend this approach
to nuclear reactions is the construction of ab initio effective interactions for e.g.
nucleon elastic scattering from nuclei in a framework based on spectator expan-
sion [10] of multiple scattering theory.The nuclear one-body densities required
for the folding with NN scattering amplitudes are based on the same chiral NN
interactions.
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In this work we compare calculations of radii, binding energies, and elastic
scattering observables using the same framework, but employing three different
NN interactions based on chiral effective field theory, calibrated to reproduce
similar data in the few-nucleon sector. The three different interactions, namely
the NNLOopt [1] and the EKM [2], as well as the Daejeon16 potential [4] are
used in calculation of one-body densities and the NN amplitudes, which are
relevant for constructing the effective NA interaction.

2 Theoretical Framework

Calculating elastic nucleon-nucleus scattering observables in an ab initio fashion
requires the interaction between the projectile and the nucleons in the target,
as well as the interaction between the nucleons within the target. A multiple
scattering expansion can organize the interactions between the projectile and the
nucleons in the target according to the number of active nucleons participating
in the reaction, as is done in the spectator expansion [10–12]. The structure of
the target nucleus is calculated employing ab initio many-body methods. For
this work we are using the no-core shell model (NCSM), which is well-suited
for light nuclei.

Up to now the leading order in the spectator expansion, which implies two
active nucleons, has been evaluated ab initio in several works for elastic scat-
tering of protons (neutrons) from nuclei with a 0+ ground state [14–16] as well
as nuclei with Jπ 6= 0+ [17]. In this work we concentrate on proton scattering
from light nuclei with Jπ = 0+ in leading order in the spectator expansion.
In this case the effective interaction of the projectile proton with a single target
nucleon can be written as function of the momentum transfer q and the average
momentum KNA, where the subscript NA refers to the nucleon-nucleus (NA)
frame.

Ûp(q,KNA; ε) =
∑
α=n,p

∫
d3Kη(K,−)Apα(q,KNA,K, ε)ρKs=0

α (P′,P)

+ i(σ(0) ·n̂)
∑
α=n,p

∫
d3Kη(K,−)Cpα(q,KNA,K, ε)ρKs=0

α (P′,P)

+ i
∑
α=n,p

∫
d3Kη(K,−)Cpα (q,KNA,K, ε)Sn,α(P′,P) cosβ

+i(σ(0) ·n̂)
∑
α=n,p

∫
d3Kη(K,−)(−i)Mpα(q,KNA,K, ε)Sn,α(P′,P) cosβ, (1)

where the subscript p indicates the projectile being a proton. The energy ε is
taken in the impulse approximation as half of the projectile energy. To shorten
formula (1), the factor η (q,K,KNA) is written as η (K,−),
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The momentum vectors are given as

q = p′ − p = k′ − k,

K =
1

2
(p′ + p) ,

n̂ =
K× q
|K× q|

KNA =
A

A+ 1

[
(k′ + k) +

1

2
(p′ + p)

]
,

P = K+
A− 1

A

q

2
,

P ′ = K− A− 1

A

q

2
.

(5)

The momentum of the incoming proton is given by k, its outgoing momentum
by k′, the momentum transfer by q, and the average momentum KNA. The
struck nucleon in the target has an initial momentum p and a final momentum
p′. The two quantities representing the structure of the nucleus are the scalar
one-body density ρKs=0

α

(
P ′,P

)
and the spin-projected momentum distribu-

tion Sn,α
(
P ′,P

)
. Both distributions are nonlocal and translationally invariant.

Lastly, the term cosβ in Eq. (1) comes from projecting n̂ from the NN frame to
the NA frame. For further details see Ref. [15]. The term η (q,K,KNA) is the
Møller factor [18] describing the transformation from the NN frame to the NA
frame.

The leading order term of Eq. (1) does not directly enter a Lippmann-Schwinger
type integral equation. To obtain the Watson optical potential Up(q,KNA; ε), an
additional integral equation needs to be solved [12, 14],

Up = Ûp − ÛpG0(E)PUp, (6)

where for simplicity the momentum variables are omitted. Here G0(E) is the
free NA propagator and P a projector on the ground state.

The functions Apα, Cpα, and Mpα represent the NN interaction through
Wolfenstein amplitudes. Since the incoming proton can interact with either a
proton or a neutron in the nucleus, the index α indicates the neutron (n) and
proton (p) contributions, which are calculated separately and then summed up.
With respect to the nucleus, the operator i(σ(0) · n̂) represents the spin-orbit
operator in momentum space of the projectile.
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The effective NA interaction in the leading order spectator expansion is
driven by the NN amplitude, which in its most general form can be parame-
terized in terms of Wolfenstein amplitudes [19],

M(q,KNN, ε) = A(q,KNN, ε)1⊗ 1

+iC(q,KNN, ε)
(
σ(0) · n̂

)
⊗ 1

+iC(q,KNN, ε) 1⊗
(
σ(i) · n̂

)
+M(q,KNN, ε)(σ

(0) · n̂)⊗ (σ(i) · n̂)
+ [G(q,KNN, ε)−H(q,KNN, ε)] (σ

(0) · q̂)⊗ (σ(i) · q̂)

+ [G(q,KNN, ε) +H(q,KNN, ε)] (σ
(0) · K̂)⊗ (σ(i) · K̂)

+D(q,KNN, ε)
[
(σ(0) · q̂)⊗ (σ(i) · K̂) + (σ(0) · K̂)⊗ (σ(i) · q̂)

]
,(7)

where σ(0) describes the spin of the projectile, and σ(i) the spin of the struck
nucleon. The average momentum in the NN frame is defined as KNN = 1

2 (k
′
NN

+kNN). The scalar functions A, C, M , G, H , and D are referred to as Wolfen-
stein amplitudes, and only depend on the scattering momenta and the energy, and
are calculated for np and pp scattering respectively. The amplitudeD(q,KNN, ε)
vanishes on-shell due to parity invariance. Each term in Eq. (7) is described by
two components, namely a scalar function of two vector momenta and an energy
(for NN scattering this is the c. m. energy of the NN system), and the coupling
between the operators of the projectile and the struck nucleon. The Wolfenstein
amplitude A sums up all pieces of the central NN force, while C represents all
pieces contributing to the spin-orbit force. The amplitudes M , G, and H sum
up tensor force contributions.

Evaluating the expectation value of the operator 1, (for the struck nucleon i),
in the ground state of the nucleus results in the scalar nonlocal, translationally
invariant one-body density ρKs=0

α in Eq. (1). This has been used successfully
as input to microscopic or ab initio calculations of leading order effective in-
teractions [14, 16, 21–23]. When evaluation the other operators from Eq. (7),
namely (σ(i) · n̂), (σ(i) · q̂), and (σ(i) · K̂), due to parity invariance arguments
only the terms proportional to (σ(i) · n̂) do not vanish in the sum over α for
Jπ = 0+ nuclei, leading to spin-projected non-local one-body density Sn,α in
Eq. (1) [15]. Thus the tensor contributions of the NN force only enter the leading
order effective NA interaction through the Wolfenstein amplitude M as long as
elastic scattering is considered.

We choose three different chiral NN interactions to study NA observables
calculated in leading order of the spectator expansion. One is the optimized chi-
ral NN interaction at the next-to-next-to-leading order NNLOopt from Ref. [1].
This interaction is fitted with χ2 ≈ 1 per degree of freedom for laboratory ener-
gies up to about 125 MeV. In the A = 3, 4 nucleon systems the contributions of
the 3NFs are smaller than in most other parameterizations of chiral interactions.
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The second is the chiral NN interaction from Refs. [2, 3] (referred to as EKM)
with a semi-local cutoff R = 1.0 fm which we consider up to next-to-next-
to-leading order. This interaction has been employed in Ref. [20] to quantify
truncation errors of the chiral EFT in NA observables. As third interaction we
employ the Daejeon16 potential [4], which is based on the Idaho N3LO chiral
interaction and is SRG evolved with a flow parameter λ=1.5 fm−1 and cast into
a harmonic oscillator basis. All three chiral NN interactions describe the np and
pp phase shifts equally well for NN laboratory kinetic energies up about 150
MeV, with differences being in details.

We calculated the squares of the real and imaginary parts of the Wolfenstein
amplitude A, (sum over the np and pp contributions) for all three interactions,
between 65 and 155 MeV laboratory kinetic energies. We considered momen-
tum transfers below 1.6 fm−1, since the forward direction of the amplitude A
can be directly related to the differential cross sections for NA scattering at low
momentum transfer (small angles) [20]. We noticed that while at the smallest
energy (65 MeV) all three potential exhibit roughly the same central strength
and agree with the Cd-Bonn calculation, when moving to higher energies the
NNLOopt becomes considerably weaker, specifically when extrapolating beyond
the energy range included when fitting its low-energy constants. We should thus
expect that those differences become visible in NA scattering observables.

Same calculations for the Wolfenstein amplitude C, which characterizes the
spin-orbit force of the NN interaction show a different behavior. In general, this
amplitude is much smaller in magnitude compared to A (about a factor of 10).
We noticed that here even at the lowest energy of 65 MeV, the amplitude C, cal-
culated with the NNLOopt is slightly larger compared to the amplitudes extracted
from the other two interactions. This trend increases as the energy increases, in-
dicating that the NN spin-orbit force is slightly stronger in the NNLOopt chiral
interaction. The amplitudes C is the main contribution to the spin-orbit part of
the NA effective interaction, Eq. (1), and thus it may be expected that its effect
may be visible in the NA spin observables.

Tensor force contributions of the NN force are summed up in the Wolfenstein
amplitudes M , G, and H . For NA scattering from a 0+ target, only the ampli-
tude M contributes to the spin-orbit part of the effective interaction. All three
chiral interactions considered in this work give identical M amplitudes in the
energy range considered and agree perfectly well with the amplitude extracted
from the Cd-Bonn potential. A possible explanation may be that the tensor force
contributions are determined quite well when fitting to deuteron properties. All
NN chiral interactions considered here are fitted to deuteron properties. In addi-
tion, the effect of the tensor force contribution to NA spin-observables is quite
small in case of scattering from 0+ targets, as was shown in Ref. [15].
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3 Structure and Elastic Scattering Observables

We obtain the ground state energies and wavefunctions of these nuclei by em-
ploying the NCSM. In this approach the A-body wavefunctions are expanded in
Slater determinants of A single-particle wavefunctions which turns the A-body
Schrödinger equation into an eigenvalue problem for the expansion coefficients,
with the lowest eigenvalue being the ground state energy. For any finite basis
expansion, the obtained eigenvalue, E, gives a strict upper bound for the energy
in the complete, but infinite-dimensional basis, and the corresponding eigenvec-
tor gives an approximation to the A-body wavefunction. As one increases the
basis size, the obtained eigenvaluesE approach the exact eigenvalues for a given
Hamiltonian.

We follow the standard practice to use a harmonic oscillator (HO) basis for
the single-particle wavefunctions, and a truncation parameterNmax is defined as
the total number of HO quanta above the minimal configuration for the ground
state satisfying the Pauli principle. This leads to an exact factorization of the
A-body wavefunction into a center-of-mass wavefunction and a relative wave-
function. We use the ground state wavefunction obtained in the NCSM to evalu-
ate the nonlocal one-body density in single-particle coordinates, from which we
subsequently obtain the translationally-invariant nonlocal one-body density [13]
that is used as input to the NA scattering calculation [14, 15].

All three nuclei considered here have 0+ ground states. For 4He and 16O, the
most important ground state observables are the energy and the charge radius;
while for 12C the quadrupole moment of the first excited state, which is a rota-
tional excitation of the ground state with J = 2, also gives information about
the deformation. The experimental charge radius is related to the point-proton
structure radius via

r2str = r2charge −
(
R2
p +

N

Z
R2
n +

3

4m2
p

)
, (8)

with R2
p and R2

n the proton and neutron mean-square charge radii (note that R2
n

is negative) , and mp is the proton mass.
The NCSM calculations depend on truncation parameters, Nmax and the

harmonic oscillator ~ω. Only in the limit Nmax → ∞ the physical observables
become independent of ~ω. Calculations of ground-state energies and point-
proton radius are almost converged for 4He, where Nmax = 18, but for 12C
and 16O, the possible Nmax = 10 on current computational resources. The
radii tend to converge significantly slower. We therefore perform calculations
over the range of 16 MeV < ~ω < 24 MeV (15 MeV < ~ω < 25 MeV for
Daejeon16), which is a compromise of a common range in which both energy
and radii converge rather well.

We present elastic scattering observable for the closed-shell nucleus 16O
and open-shell nucleus 12C using the three interactions described previously.
In all figures the lines represent the calculations with ~ω = 20 MeV, and the
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Figure 1. Differential cross section, analyzing power, and spin rotation function, Q, for
proton scattering off 4He calculated at 65 MeV projectile energy as function of the trans-
ferred momentum q. The calculation employs three interactions: NNLOopt [1] inter-
action (short-dashed), Daejeon16 [4] interaction (dashed), and EKM [2, 3] interaction
(solid) with parameters ~ω = 20 ± 4, and Nmax=10 (left) and Nmax=20 (right). The
experimental data are from Ref. [24] .

bands give the variations in calculations for ~ω in between 16 and 24 MeV for
NNLopt and EKM interactions, and in between 15 to 25 MeV for Daejeon16
interaction. The dependence on ~ω results from the calculations of the scalar
and spin-projected one-body densities entering the NA effective interactions in
leading order in the spectator expansion, and becomes insignificant when Nmax
is large, as it can be seen from Figure 1 where the calculations are performed
with Nmax = 10 (left side) and Nmax = 20 (right side). For 12C and 16O,
the calculations are performed only up to Nmax = 10 due to large dimensional
spaces.

The differential cross sections divided by the Rutherford cross section are
calculated at laboratory kinetic energy of 65 MeV where we can compare them
with experimental data for 12C from Ref. [24], and for 16O from Ref. [25], in
Figure 2. Calculations at laboratory kinetic energy of 100 MeV are presented in
Figure 3, and at 160 (180) MeV in Figure 4. The calculated differential cross
sections overlap with the experimental values up to momentum transfer values
of about 1.2 fm−1 at 65 MeV. At 100 MeV, the calculated values are close to the
experimental ones for 12C, but they over predict the experimental values for 16O,
with calculations based on NNLopt interaction being closer to the experimental
data. As we mentioned before, the sum of the square of the real and imaginary
part of the Wolfenstein amplitude A (central part) for pp and np scattering, as
function of momentum transfer, are almost identical at 65 MeV when calculated
with the three interactions, but they start to differ at higher laboratory kinetic
energies. In it interesting to notice that we observe the same behavior in the
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Figure 2. Differential cross section, analyzing power, and spin rotation function, Q, for
proton scattering off 12C (left) and 16O (right) calculated at 65 MeV projectile energy
as function of the transferred momentum q. The calculation employs three interactions:
NNLOopt, Daejeon, and EKM interactions with parameters hω = 20±4, and Nmax=10.
The experimental data for 12C are from Ref. [24] and for 16O from Ref. [25]. The de-
scription of the lines and bands is the same as in Figure 1.

calculated differential cross sections.

Figure 3. Differential cross section, analyzing power, and spin rotation function, Q, for
proton scattering off 12C and 16O calculated at 100 MeV projectile energy as function of
the transferred momentum q. The calculation employs several interactions: NNLOopt,
Daejeon, and EKM interactions with parameters hω = 20 ± 4, and Nmax=10. The
description of the lines and bands is the same as in Figure 1.

As we discussed in Section 2, the Wolfenstein amplitude C, characterizes
the spin-orbit force of he NN interaction, and calculated with the three inter-
actions, has different values with the highest with NNLOopt, and lowest with
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Figure 4. Differential cross section, analyzing power, and spin rotation function, Q, for
proton scattering off 12C at 160 MeV [27], and 16O calculated at 180 MeV [28] projectile
energy as function of the transferred momentum q. The calculation employs several
interactions: NNLOopt, Daejeon, and EKM interactions with parameters hω = 20 ± 4,
and Nmax=10. The description of the lines and bands is the same as in Figure 1.

EKM, and the differences increase with increasing laboratory kinetic energy. It
is interesting to notice that we observe a similar pattens in calculations of the
analyzing power, Ay , and the spin rotation function, Q. The calculated Ay and
Q are similar at 65 MeV with differences at higher momentum transfer values.
At 100 MeV, and 160 (180) MeV, the calculations with NNLOopt interaction
describe well the Ay values for 12C and 16O, while the Daejeon16 and EKM in-
teractions are missing the dip in Ay at about 1.5 fm−1. There are less available
experimental data for spin rotation function Q. Calculated values predict similar
results at low momentum transfer with all three interactions, but they start to dif-
fer about about 1 fm−1 with increased laboratory kinetic energy. More details
are presented in our recent paper [26].

4 Conclusion

In this work we calculated elastic scattering observables for 4He, 12C and 16O
in an ab initio framework for three different NN interactions based on chiral
effective field theory. As examples, we studied the open-shell nucleus 12C and
the close-shell nucleus 16O. The elastic scattering observables are calculated
using the leading order in the spectator expansion, so two nucleons are active in
the scattering process. Since the NCSM calculations depend on the parameters
Nmax and ~ω, we used the highest possible value ofNmax for each nucleus, and
we choose the ~ω for which the ground state energy and the point-proton radii
are close to convergence. Our study shows that the three NN interactions based
on a chiral field theory framework and calibrated to reproduce similar data in the
few-nucleon systems, predict NA scattering observables quite differently.
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low momentum transfer with all three interactions, but they start to differ about
about 1 fm−1 with increased laboratory kinetic energy. More details are pre-
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In this work we calculated elastic scattering observables for 4He, 12C and 16O
in an ab initio framework for three different NN interactions based on chiral
effective field theory. As examples, we studied the open-shell nucleus 12C and
the close-shell nucleus 16O. The elastic scattering observables are calculated
using the leading order in the spectator expansion, so two nucleons are active in
the scattering process. Since the NCSM calculations depend on the parameters
Nmax and ~ω, we used the highest possible value of Nmax for each nucleus, and
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we choose the ~ω for which the ground state energy and the point-proton radii
are close to convergence. Our study shows that the three NN interactions based
on a chiral field theory framework and calibrated to reproduce similar data in the
few-nucleon systems, predict NA scattering observables quite differently.
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