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Abstract. This paper investigates the influence of nuclear deformation on the
isoscalar giant monopole resonance (ISGMR) in the 98−102Mo isotopes us-
ing the quasiparticle finite amplitude method (QFAM) within the relativistic
Hartree-Bogoliubov (RHB) framework. The study systematically explores the
behavior of ISGMR under different axial and triaxial deformations, examining
both spherical and deformed configurations. The calculations reveal shape co-
existence and triaxial deformation effects, which significantly alter the ISGMR
strength distributions. A detailed comparison with experimental data shows that
accounting for nuclear deformation improves agreement, with deviations of less
than 0.5 MeV. The findings emphasize the crucial role of deformation in un-
derstanding nuclear resonances, particularly in the context of soft monopole
modes. The analysis of the K = 0 component of the ISGQR demonstrates
notable monopole-quadrupole coupling, which contributes to the emergence of
these soft monopole resonances.

1 Introduction

The isoscalar giant resonance [1,2], particularly its monopole component, offers
crucial insights into nuclear dynamics and structure. It enables the determina-
tion of nuclear incompressibility, a key parameter in the nuclear equation of
state. This collective excitation provides valuable information on nuclear matter
properties under extreme conditions, aids in validating theoretical models, and
has implications for understanding phenomena like neutron star structure and
nuclear symmetry energy. Its study continues to be pivotal in bridging nuclear
physics with astrophysics and advancing our comprehension of nuclear interac-
tions.

The isovector giant dipole resonance (IVGDR) was first detected in 1947
using several techniques, such as photoabsorption, inelastic scattering, and γ-
decay [3, 4]. It wasn’t until 1971-1972 that the isoscalar giant quadrupole reso-
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nance (ISGQR) was observed [5, 6], followed by the discovery of the isoscalar
giant monopole resonance (ISGMR) in 1977 [7]. From experimental data, em-
pirical relationships for the energy of these resonances have been derived [8, 9].
The ISGMR, in particular, is of special interest due to its link with the nuclear
incompressibility factor K0 [10, 11].

This study explores nuclear excitation properties using microscopic approach-
es, primarily the Generator Coordinate Method (GCM) and Random Phase Ap-
proximation (RPA). While GCM mixes Hartree-Fock-Bogoliubov states, RPA
offers computational efficiency and considers particle-hole excitations. RPA’s
evolution from condensed matter physics to nuclear systems led to advanced
variants like QRPA and the Finite Amplitude Method. The research focuses
on molybdenum isotopes, ideal for studying complex nuclear phenomena due
to their structural features and deformation characteristics. It investigates reso-
nances in the isoscalar monopole strength profile, considering nuclear deforma-
tion and neutron excess effects. Experimental findings reveal enhanced monopole
strength across various nuclear regions, with some resonances linked to cluster
modes or isoscalar monopole-quadrupole coupling. The study employs rela-
tivistic mean-field calculations with triaxial degrees of freedom to identify shape
isomeric states and determine isoscalar giant monopole resonances at each equi-
librium deformation. Using the QFAM method based on the axially deformed
Relativistic Hartree-Bogoliubov approach, this research contributes to under-
standing nuclear deformation’s influence on excitation modes in molybdenum
isotopes. The structure of this article is as follows: In Section 2, we provide a
brief summary of the approaches employed for our calculations. Section 3 con-
tains the numerical specifics, information about the interactions utilized in our
calculations, and a presentation, analysis, and discussion of the results obtained.
Finally, in Section 4, we present the main conclusions drawn from our work.

2 Theoretical Framework

The Relativistic Hartree-Bogoliubov (RHB) framework offers a robust method
for describing the decay, structural properties, and excited states of both spher-
ical and deformed nuclei. In this approach, the nuclear state is represented
by a generalized Slater determinant |Φ|, which acts as a vacuum for indepen-
dent quasiparticles. The quasiparticles are defined through a unitary Bogoliubov
transformation, and the resulting Hartree-Bogoliubov wave functions, U and V ,
are derived from the RHB equation:(

hD −m− λ ∆
−∆∗ −h∗D +m+ λ

)(
Uk
Vk

)
= Ek

(
Uk
Vk

)
. (1)

In this equation, the single-nucleon Dirac Hamiltonian is denoted as hD, while
∆ represents the pairing field, with U and V referring to Dirac spinors.

The quasiparticle finite amplitude method (QFAM) starts with the linear re-
sponse equations [12], which serve as the foundation for exploring the response
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of the nuclear system to various perturbations

(Eµ + Eν − ω)Xµν(ω) + δH20
µν(ω) = −F 20

µν , (2)

(Eµ + Eν + ω)Yµν(ω) + δH02
µν(ω) = −F 02

µν , (3)

In this formulation, Eµ and Eν represent the quasiparticle energies, while Xµν

and Yµν denote the transition amplitudes. Specifically, µν corresponds to the
annihilation of two quasiparticles labeled as ’02’, and µν refers to the creation
of two quasiparticles labeled as ’20’. Additionally, δH signifies the induced
Hamiltonian resulting from the perturbation of the nuclear system by an ex-
ternal field F at a frequency ω. This framework facilitates the analysis of the
system’s response to external influences, allowing for a deeper understanding of
its collective behavior.

Finally, the response function can be expressed as follows:

SF (F̂ , ω) = − 1

π
Im
∑
µν

F 20∗
µν Xµν(ω) + F 02∗

µν Yµν(ω), (4)

Constrained Relativistic Hartree-Bogoliubov (RHB) calculations involve im-
posing constraints on both axial and triaxial quadrupole moments to construct a
potential energy surface (PES) map. This approach employs the quadratic con-
strained method [13], where the goal is to minimize the function

〈Ĥ〉+
∑
µ=0,2

C2,µ(〈Q̂2µ〉 − q2µ)2, (5)

where 〈Ĥ〉 represents the total energy of the system, and 〈Q̂2µ〉 denotes the ex-
pectation value of the mass quadrupole operators. The function to be minimized
can then be expressed as:

Q̂20 = −(x2 + y2) + 2z2,

and
Q̂22 = x2 − y2, (6)

The constrained value of the multipole moment is denoted as q2µ, while C2µ

represents the corresponding stiffness constant. The triaxial deformation param-
eter γ can be expressed in terms of the quadrupole moments Q̂20 and Q̂22 as
follows:

γ = arctan(
√

2
Q̂22

Q̂20

). (7)

The quasiparticle finite amplitude method (QFAM) calculations have been
conducted using the Relativistic Hartree-Bogoliubov (RHB) framework, con-
strained to various deformations parameterized by the axial quadrupole parame-
ter β2. This approach allows for the systematic exploration of different monopole
resonances as the deformation of the nuclear system is varied, providing insights
into both soft and cluster modes.
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3 Numerical Details

The numerical approach followed in this analysis based on the methodologies
suggested in Refs. [14, 15]. We utilize a full anisotropic triaxial-deformed har-
monic oscillator basis, with NF = 14 for fermions and NB = 20 for bosons.
The RHB equations and the nucleon equations of motion are solved within this
basis, incorporating the covariant density-dependent meson-exchange functional
DD-ME2 [16]. To effectively address pairing correlations in nuclei characterized
by open shell closures, we apply the separable pairing force proposed by Tian et
al. [17], which is implemented in coordinate space. Additionally, the smearing
parameter is set to γ/2 = 1.5 MeV.

3.1 Ground-state deformation

Figure 1 shows the potential energy curves (PECs) of 98−102Mo isotopes calcu-
lated using the DD-ME2 functional, with the constraint on the axial deformation
parameter β and triaxial parameter γ. These studied nuclei exhibit distinct de-
formation properties. The isotope 98Mo exhibits triaxial deformation, with its
potential energy surface (PES) indicating a single minimum at non-axial coor-
dinates (β2 = 0.25, γ = 10◦), marking a clear deviation from simpler shapes.
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Figure 1. Potential energy curves obtained by constrained calculations with DD-ME2
functional.
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Moving to 100Mo, the PES reveals a more complex scenario, with triaxial defor-
mation at (β2 = 0.25, γ = 20◦) accompanied by second minima at (β2 = 0.22,
γ = 60◦), including a third significant minimum approximately 1 MeV above
the ground state energy. This highlights the emergence of shape coexistence,
where competing nuclear configurations are evident. Finally, in 102Mo, triaxial-
ity becomes even more pronounced, and an axial minimum appears in the oblate
region, further suggesting the presence of shape coexistence. As deformation
intensifies across these isotopes, the coexistence of multiple nuclear shapes be-
comes increasingly prominent, particularly in 100Mo and 102Mo.

3.2 QFAM strength evolutions

The isoscalar giant monopole resonances (ISGMR) for 98−102Mo isotopes have
been calculated using the Quasiparticle Finite Amplitude Method (QFAM). These
calculations, shown in Figure 2, are compared with experimental measurements.
The analysis covers a frequency range up to 25 MeV, with calculations per-
formed at 0.25 MeV intervals. The ISGMR profiles were determined under two
conditions: assuming a spherical nuclear shape and using the exact shape iso-
meric states. The results show good agreement with experimental data, with dis-
crepancies generally less than 0.5 MeV. Notably, the agreement improves when
nuclear deformation effects are considered in the calculations.
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Figure 2. Calculated isoscalar mono-
pole strengths in some Mo isotopes,
within DD-ME2 model. The strengths
are compared with the available experi-
mental data.
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The analysis of 98−102Mo reveals a consistent main ISGMR peak around
17 MeV in spherical configurations, with an increasingly prominent low-energy
shoulder as neutron number increases. When deformation is considered, the
main peak broadens and the low-energy shoulder becomes more pronounced,
particularly in heavier isotopes. The interplay between the main peak and shoul-
der suggests a gradual exchange of positions with increasing mass number.100Mo,
being the most deformed, exhibits a sharp main peak at 14.5 MeV for oblate de-
formations, accompanied by a weak secondary shoulder around 22.5 MeV. This
isotopic chains demonstrates the significant influence of both nuclear deforma-
tion and neutron excess on the ISGMR strength distribution, especially evident
in the evolution of low-energy shoulders and the sensitivity to the deformation
parameter β2.

The observed splitting of the ISGMR into two peaks can be attributed to the
coupling between monopole and K=0 component quadrupole modes, a charac-
teristic feature of deformed nuclei with non-zero β2. To investigate this correla-
tion, the K=0 component of ISGQR strength was analyzed using the DD-ME2
model. The results, presented in Figure 3, reveal a clear alignment between
ISGQR peaks and monopole strength shoulders for β2 > 0 (prolate configura-
tions). However, this alignment is absent for β2 < 0 (oblate configurations),
indicating a selective coupling mechanism.
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Figure 3. Calculated isoscalar quadru-
pole strengths in 98,102Mo isotopes, us-
ing DD-ME2 model.
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This pattern mirrors findings from previous studies on zirconium isotopes,
reinforcing the observation that monopole-quadrupole coupling occurs predom-
inantly in prolate configurations, while being notably absent in oblate cases. The
phenomenon can be understood through the lens of angular momentum behavior
in axially deformed nuclei. Unlike spherical nuclei where total intrinsic angular
momentum defines intrinsic states, axially deformed nuclei rely on the angular
momentum projection K as the sole good quantum number for intrinsic excited
states.

Consequently, any non-zero quadrupole deformation theoretically permits
mixing of monopole and quadrupole modes in K=0 intrinsic states. In the case
of Mo isotopes, this mixing manifests exclusively in prolate configurations. The
resulting quadrupole peak, induced by monopole-quadrupole coupling, appears
in the isoscalar monopole strength function at an energy typical for the E2 IS-
GQR centroid position. Notably, the intensity of this shoulder is directly propor-
tional to the strength of the monopole-quadrupole mixing, which increases with
greater quadrupole deformation .

4 Conclusion

This study examined isoscalar giant monopole resonances (ISGMR) in molybde-
num isotopes (98,102Mo) using the quasiparticle finite amplitude method within a
relativistic framework. It revealed shape coexistence in heavier isotopes, consis-
tent ISGMR peaks around 17 MeV in spherical configurations, and increasingly
prominent low-energy shoulders with increasing neutron number. Nuclear de-
formation effects enhanced these features and improved agreement with exper-
imental data. The research also demonstrated monopole-quadrupole coupling,
predominantly in prolate configurations. These findings contribute significantly
to our understanding of nuclear structure and dynamics, emphasizing the impor-
tance of considering deformation in nuclear resonance studies and illuminating
the complex relationship between nuclear shape and excitation modes.
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