Microscopic Study of Wobbling Motion Based on Relativistic Density Functional Theory

H.M. Dai, Q.B. Chen

East China Normal University, Shanghai 200241, China

Investigating wobbling motion provides crucial insights into the fundamental structure and excitation modes of nuclei [1–3], making it a frontier topic in both experimental and theoretical nuclear structure research. There are two necessary conditions for establishing the wobbling mode, i.e., significant triaxial deformation and high-*j* particle(s) or hole(s) configuration. To search for the wobbling candidates in the realistic nuclei, a reliable theoretical approach is needed to get the information of the configuration and deformation for a specific nucleus. In this talk, the combination of quantal particle rotor model and the state-of-art relativistic density functional theory (abbreviate as RDFT+PRM) will be used to describe the wobbling candidates. First of all, the impacts of quadrupole deformation parameter [4], triaxial deformation parameter [4], and valence nucleon Fermi surface [5] on the wobbling modes will be analyzed. Subsequently, we will present recent work on the possible wobbling candidates in the odd-neutron isotones [6] and in the 160 mass region [7].

References

- [1] A. Bohr, B.R. Mottelson, Nuclear structure, Benjamin, New York (1975).
- [2] S. Frauendorf, F. Dönau, Phys. Rev. C 89 (2014) 014322.
- [3] Q.B. Chen, S. Frauendorf, Eur. Phys. J. A 58 (2022) 75.
- [4] H.M. Dai, Q.B. Chen, Phys. Rev. C 109 (2024) 054321.
- [5] S.H. Li, H.M. Dai, Q.B. Chen, X.-R. Zhou, Chin. Phys. C 48 (2024) 034102.
- [6] H.M. Dai, Q.B. Chen, X.-R. Zhou, Phys. Rev. C 108 (2023) 054306.
- [7] H.M. Dai, Q.B. Chen, submitted to Phys. Rev. C (2025).