Nuclear Reaction Rate Uncertainties in the r-Process: Insights from Self-Consistent FT-RQRPA Calculations of Dipole Transitions

T. Ghosh, A. Kaur, N. Paar

Dept. of Physics, Faculty of Science, University of Zagreb, 10000 Zagreb, Croatia

To comprehensively understand nuclear astrophysical network calculations, especially in the context of processes like the r-process, it is crucial to consider astrophysical reaction rates at a fixed temperature which requires Maxwellian-averaged cross-sections across a wide range of energies for radiative neutron capture processes. Determining these cross-sections and reaction rates within a statistical framework [1–3] primarily relies on three key components: (i) Neutron-Nucleus Optical Model Potential (OMP), (ii) Gamma-ray Strength Function (SF), and (iii) Nuclear Level Density (NLD). While uncertainties in the Neutron-Nucleus Optical Model Potential (OMP) are relatively small, the Gamma-ray Strength Function (SF) and Nuclear Level Density (NLD) have a more significant impact on shaping the calculated neutron capture rates.

In our recent study, we have calculated temperature effects in electric and magnetic dipole (E1 and M1) transitions using a self-consistent finite-temperature relativistic quasiparticle random phase approximation (FT-RQRPA) based on a relativistic energy density functional with point-coupling interactions [4, 5]. Currently, we examine their impact on crucial astrophysical reaction rate calculations.

References

- [1] W. Hauser et al., Phys. Rev. 87 (1952) 366.
- [2] Sangeeta et al., Phys. Rev. C 105 (2022) 044320.
- [3] T. Ghosh et al., J. Phys. G 51 (2024) 045105.
- [4] A. Kaur et al., *Phys. Rev. C* 109 (2024) 014314.
- [5] A. Kaur et al., *Phys. Rev. C* 109 (2024) 024305.